UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Modeling solar cells with recombination Guram, Prabhjot Kaur

Abstract

An elementary model for the analysis of a photovoltaic solar cell is proposed. This analysis is rooted in the current-voltage device characteristics associated with a p-n junction in conjunction with a model for a solar flux controlled current source; this follows the approach of Prince [M. B. Prince, Journal of Applied Physics, vol. 26, pp. 553-540, 1955], the p-n junction architecture being that underlying the photovoltaic solar cell. Recombination processes were modeled through two means: (1) an empirical expression for the current-voltage device characteristics with an associated ideality factor, whose value determines the importance of recombination processes, and (2) a more advanced expression that includes a recombination current. It is shown that the simplified empirical expression is overly simplified and that its use leads to artifacts, i.e., the suggestion that recombination processes could actually enhance the fill-factor. In contrast, the more realistic current voltage device characteristic, which includes both ideal and recombination related current densities, suggests that recombination processes actually will reduce the fill-factor. This later observation is in accord with the experimental observation.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International