Go to  Advanced Search

Part A: Precipitation hardening in a TI-CU alloy Part B: The structural and nagnetic Properties of some quarternary alloys of Mn₆₀oA1ₓZn₂₀-ₓC₂₀ and Mn₆₀GaₓZn₂₀-ₓC₂₀

Show full item record

Files in this item

Files Size Format Description   View
UBC_1956_A7 H7 P8.pdf 2.480Mb Adobe Portable Document Format   View/Open
 
Title: Part A: Precipitation hardening in a TI-CU alloy Part B: The structural and nagnetic Properties of some quarternary alloys of Mn₆₀oA1ₓZn₂₀-ₓC₂₀ and Mn₆₀GaₓZn₂₀-ₓC₂₀
Author: Howe, Lawrence Martin
Degree Master of Applied Science - MASc
Program Mining Engineering
Copyright Date: 1956
Subject Keywords Titanium alloys
Abstract: The decreasing solid solubility limit at the titanium-rich end of the titanium-copper constitutional diagram suggests the possibility that titanium-rich alloys may be age-hardenable. However, results obtained by previous investigators, using lump samples, show that after quenching from 790°C the age-hardening of an alloy containing 1,7 percent copper is very light while a 0.8 percent copper alloy decreases in hardness, during heat treatment at 400°C. It was believed possible that powder samples of alloys might show different results from the lump samples used by previous investigators. Consequently, a 1.90 percent copper alloy was made by the technique of levitation melting, checked for homogeneity, and filings of 48-65 Tyler screen size were cut from it for aging experiments. Hardness readings do show a hardness peak at aging temperatures of 400°C, 450°C, and 500°C and thus indicate that the titanium-copper alloy is susceptible to age-hardening treatments. Interest in the Mn₆₀A1xZn₂₀_ₓC₂₀ and Mn₆₀GaₓZn₂₀-ₓC₂₀ systems results from pregious studies of Mn-A1-C, Mn-Zn-C, and Mn-Ga-C systems; in particular the alloys near compositions Mn₆₀A1₂₀C₂₀, Mn₆₀Zn₂₀C₂₀ and Mn₆₀Ga₂₀C₂₀. The saturation magnetization (σ) versus temperature (T) curve for alloys near the compositions Mn₆₀A1₂₀C₂₀ and Mn₆₀Ga₂₀C₂₀ shows normal ferromagnetic behaviour from 0°K to the Curie points of the alloys. Alloys near the composition Mn₆₀Zn₂₀C₂₀, on the other hand, have abnormal behaviour as they experience a maximum in the σ-T curve in the neighbourhood of -40°C. Reasons for investigating the Mn₆₀A1Zn₂₀-xC₂₀ andMN₆₀GaₓZn₂₀-ₓC₂₀ systems were: 1. to provide further data regarding the presence of abnormal behaviour in Mn₆₀Zn₂₀C₂₀ and of normal behaviour in Mn₆₀A1₂₀C₂₀ and Mn₆₀Ga₂₀C₂₀. (i.e. alloys near these compositions). 2. to suggest how the valency of the cube-corner atom affects the normal ferromagnetic moment of these alloys. However, investigation of these systems has lead to even more complicated phenomena, and the above two items remain, to a large extent, unsolved.
URI: http://hdl.handle.net/2429/40404
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893