Go to  Advanced Search

Silicon photonic resonator sensors and devices.

Show full item record

Files in this item

Files Size Format Description   View
Chrostowski_SPIE_8236_823620.pdf 1.702Mb Adobe Portable Document Format   View/Open
 
Title: Silicon photonic resonator sensors and devices.
Author: Chrostowski, Lukas; Grist, Samantha M.; Flueckiger, Jonas; Shi, Wei; Wang, Xu; Ouellet, Eric; Yun, Han; Webb, Mitch; Nie, Ben; Liang, Zhen; Cheung, Karen C.; Jaeger, Nicolas A. F.
Issue Date: 2012
Publicly Available in cIRcle 2012-03-03
Publisher Society of Photo-Optical Instrumentation Engineers
Citation: Chrostowski, Lukas; Grist, Samantha; Flueckiger, Jonas; Shi, Wei; Wang, Xu; Ouellet, Eric; Yun, Han; Webb, Mitch; Nie, Ben; Liang, Zhen; Cheung, Karen C.; Jaeger, Nicolas A. F. Silicon photonic resonator sensors and devices. Laser Resonators, Microresonators, and Beam Control XIV, edited by Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko Proceedings of SPIE Volume 8236, 823620, 2012. http://dx.doi.org/10.1117/12.916860
Abstract: Silicon photonic resonators, implemented using silicon-on-insulator substrates, are promising for numerous applications. The most commonly studied resonators are ring/racetrack resonators. We have fabricated these and other resonators including disk resonators, waveguide-grating resonators, ring resonator reflectors, contra-directional grating-coupler ring resonators, and racetrack-based multiplexer/demultiplexers. While numerous resonators have been demonstrated for sensing purposes, it remains unclear as to which structures provide the highest sensitivity and best limit of detection; for example, disc resonators and slot-waveguide-based ring resonators have been conjectured to provide an improved limit of detection. Here, we compare various resonators in terms of sensor metrics for label-free bio-sensing in a micro-fluidic environment. We have integrated resonator arrays with PDMS micro-fluidics for real-time detection of biomolecules in experiments such as antigen-antibody binding reaction experiments using Human Factor IX proteins. Numerous resonators are fabricated on the same wafer and experimentally compared. We identify that, while evanescent-field sensors all operate on the principle that the analyte's refractive index shifts the resonant frequency, there are important differences between implementations that lie in the relationship between the optical field overlap with the analyte and the relative contributions of the various loss mechanisms. The chips were fabricated in the context of the CMC-UBC Silicon Nanophotonics Fabrication course and workshop. This yearlong, design-based, graduate training program is offered to students from across Canada and, over the last four years, has attracted participants from nearly every Canadian university involved in photonics research. The course takes students through a full design cycle of a photonic circuit, including theory, modelling, design, and experimentation Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Affiliation: Chemical and Biological Engineering, Dept ofElectrical and Computer Engineering, Dept of
URI: http://hdl.handle.net/2429/41115
Peer Review Status: Reviewed
Scholarly Level: Faculty

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893