Go to  Advanced Search

Single wall closed-form differential ultrasound calibration.

Show full item record

Files in this item

Files Size Format Description   View
Rohling_SPIE_8316_83162A.pdf 336.6Kb Adobe Portable Document Format   View/Open
 
Title: Single wall closed-form differential ultrasound calibration.
Author: Najafi, Mohammad; Afsham, Narges; Abolmaesumi, Purang; Rohling, Robert N.
Issue Date: 2012
Publicly Available in cIRcle 2012-03-05
Publisher Society of Photo-Optical Instrumentation Engineers
Citation: Najafi, Mohammad; Afsham, Narges; Abolmaesumi, Purang; Rohling, Robert N. Single wall closed-form differential ultrasound calibration. Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, edited by David R. Holmes III, Kenneth H. Wong Proceedings of SPIE, Volume 8316, 83162A, 2012. http://dx.doi.org/10.1117/12.911459
Abstract: In freehand 3D ultrasound, images are acquired while the position of the transducer is recorded with a tracking device. Calibration is essential in this technique to find the transformation from the image coordinates to the reference coordinate system. The single wall technique is a common calibration method because a simple plane phantom is used. Despite its advantages, such as ease of phantom construction and image analysis, this method requires large number of images to converge to the solution. One reason is a lack of a closed-form solution. Also, the technique uses slightly illconditioned sets of equations with a high condition number due to limited range of scanning motions that produce clear images of the plane. Here, a novel closed-form formulation has been proposed for the single wall calibration technique. Also, differential measurements of the plane image are used instead of absolute plane detection to improve accuracy. The closed-form solution leads to more accurate and robust results while providing an insight into understanding error propagation and finding the optimal set of transducer poses. Results have been compared to the conventional single wall technique. A residual error of 0.14 mm is achieved for the proposed method compared to 0.91 mm in the conventional approach. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Affiliation: Electrical and Computer Engineering, Dept of
URI: http://hdl.handle.net/2429/41144
Peer Review Status: Reviewed
Scholarly Level: Faculty

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893