Go to  Advanced Search

Out-of-plane motion estimation based on a Rician-Inverse Gaussian model of RF ultrasound signals: speckle tracking without fully developed speckle.

Show full item record

Files in this item

Files Size Format Description   View
Rohling_SPIE_8320_832017.pdf 608.8Kb Adobe Portable Document Format   View/Open
 
Title: Out-of-plane motion estimation based on a Rician-Inverse Gaussian model of RF ultrasound signals: speckle tracking without fully developed speckle.
Author: Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert N.
Issue Date: 2012
Publicly Available in cIRcle 2012-03-05
Publisher Society of Photo-Optical Instrumentation Engineers
Citation: Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert N. Out-of-plane motion estimation based on a Rician-Inverse Gaussian model of RF ultrasound signals: speckle tracking without fully developed speckle. Medical Imaging 2012: Ultrasonic Imaging, Tomography, and Therapy, edited by Johan G. Bosch, Marvin M. Doyley Proceedings of SPIE, Volume 8320, 832017, 2012. http://dx.doi.org/10.1117/12.911710
Abstract: Fully developed speckle has been used previously to estimate the out-of-plane motion of ultrasound images. However, in real tissue the rarity of such patterns and the presence of coherency diminish both the precision and the accuracy of the out-of-plane motion estimation. In this paper, for the first time, we propose a simple mathematical derivation for out-of-plane motion estimation in which the coherent and non-coherent parts of the RF echo signal are separated. This method is based on the Rician-Inverse Gaussian stochastic model of the speckle formation process, which can be considered as a generalized form of the K-distribution with richer parameterization. The flexibility of the proposed method allows considering any patch of the RF echo signal for the purpose of displacement estimation. The experimental results on real tissue demonstrate the potential of the proposed method for accurate out-of-plane estimation. The underestimation of motion in ex vivo bovine tissue at 1 mm displacement is reduced to 15.5% compared to 37% for a base-line method. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Affiliation: Electrical and Computer Engineering, Dept of
URI: http://hdl.handle.net/2429/41146
Peer Review Status: Reviewed
Scholarly Level: Faculty

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893