Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will not be accepting new material from 05:00 on September 1/15 until 08:00 on September 4/15. Read only access will be available during this period. Apologies for the inconvenience.

Generalized dynamic average modeling of line-commutated converter systems in transient simulation programs

Show full item record

Files in this item

Files Size Format Description   View
ubc_2012_spring_chiniforoosh_sina.pdf 6.071Mb Adobe Portable Document Format   View/Open
Title: Generalized dynamic average modeling of line-commutated converter systems in transient simulation programs
Author: Chiniforoosh, Sina
Degree Doctor of Philosophy - PhD
Program Electrical and Computer Engineering
Copyright Date: 2012
Publicly Available in cIRcle 2012-04-03
Abstract: Power electronic converters are used in a wide range of applications as well as being the enabling technology for interfacing the alternative energy resources and many loads in modern power systems. The methodology of developing the so-called dynamic average-value models (AVMs) for such converters is based on averaging the variables (currents and voltages) within a switching interval resulting in numerically efficient models that are much more suitable than the detailed switching models for system-level studies as well as numerical linearization and the respective small-signal analysis. However, the AVMs available in the literature for line-commutated converters have several limitations such as neglecting the effects of losses, being only valid in certain operational modes and under balanced excitation, as well as employing a simplified representation of the multi-phase transformer in high-pulse-count converters. Moreover, a unified AVM methodology for high-pulse-count converters has not yet been established. In this thesis, a generalized AVM methodology is developed for voltage-source- and rotating-machine-fed multi-pulse line-commutated converters for both classes of transient simulation software packages, i.e., state-variable-based and nodal-analysis-based electromagnetic transient program (EMTP) type. The previously-developed AVM approaches, i.e., analytical and parametric, are extended to the EMTP-type programs, and the indirect and direct methods of interfacing the models with external circuit-network are introduced and compared. For the machine-converter systems, the effects of machine and bridge losses are taken into account in the new AVM. Finally, a generalized dynamic AVM methodology is developed for high-pulse-count converters based on the parametric approach. An effective multi-phase transformer model is developed in transformed (qd0) and phase (abc) variables. An efficient transformer model is also developed, which accurately represents the multi-phase transformer using an equivalent three-phase formulation. The proposed generalized AVM remains valid for all operational modes under balanced and unbalanced excitation. This model is employed for AVM implementation in state-variable-based and EMTP-type programs. Extensive simulation and experimental studies are carried out on several example systems in order to compare the developed AVMs against the detailed and previously-developed average models in time- and frequency-domains. The results demonstrate the great accuracy of the proposed AVMs and a significant improvement compared to the previously-developed models.
URI: http://hdl.handle.net/2429/41917
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893