Go to  Advanced Search

Design for reuse of existing buildings applied to the Canada- France-Hawaii-Telescope structure

Show full item record

Files in this item

Files Size Format Description   View
ubc_2012_spring_angers_mathieu.pdf 1.593Mb Adobe Portable Document Format   View/Open
 
Title: Design for reuse of existing buildings applied to the Canada- France-Hawaii-Telescope structure
Author: Angers, Mathieu
Degree Master of Applied Science - MASc
Program Civil Engineering
Copyright Date: 2012
Publicly Available in cIRcle 2012-04-13
Abstract: Reusing structures is a complex process. However, it can provide significant economic, social and environmental benefits. The reuse of structures requires their prior structural evaluation. This document presents a methodology to evaluate the possibility of reusing an existing structure through a case study of the Canada-France-Hawaii Telescope (CFHT), located in on Mauna Kea Volcano, Hawaii. The operators of the CFHT mandated a research group with members from the University of British Columbia and Empire Dynamic Structures to evaluate the possibility of having the current pier building support the mass and configuration of a proposed new telescope. The original pier was designed in 1974, and thus it was necessary to verify if the structure would meet current codes, particularly those of seismic requirements. The current telescope has a diameter of 3.6 m and the new design would be a 10 or 12 m instrument. The methodology was used to perform a structural evaluation of the CFHT pier building supporting the new CFHT telescope. From the analysis, the following points were concluded: • The bending moment and shear capacities were found to be high enough to resist resulting forces of the proposed new structure. Required steel reinforcement in the walls and slabs of the pier building are comparable to those found in the current structure. They were judged to be sufficient for supporting the new telescope. • The footing structural resistance was found to be satisfactory. Also, differential settlements were found to be under an acceptable level. • The soil bearing capacity was evaluated by Dames & Moore (1973) to be 191 kPa. Under gravity loads, the pressure induced by the footings was considered to be satisfactory. However, in an earthquake condition, the design bearing capacity of the soil is commonly assumed to be 33% greater than in a static condition due to the dynamic nature of the loading. With this assumption, the capacity of the soils is found to be satisfactory. However, it is recommended that there be further geotechnical soil and foundation evaluation. It is concluded the CFHT pier can be reused for the installation of the proposed new telescope.
URI: http://hdl.handle.net/2429/41993
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893