Go to  Advanced Search

Development of a laboratory scale procedure for predicting throughput of high pressure grinding rolls

Show full item record

Files in this item

Files Size Format Description   View
ubc_2012_spring_nadolski_stefan.pdf 3.425Mb Adobe Portable Document Format   View/Open
Title: Development of a laboratory scale procedure for predicting throughput of high pressure grinding rolls
Author: Nadolski, Stefan
Degree Master of Applied Science - MASc
Program Mining Engineering
Copyright Date: 2012
Publicly Available in cIRcle 2012-04-19
Abstract: The throughput capability of a high pressure grinding roll (HPGR), a critical process parameter, has been found to heavily depend on the sample type being processed. Existing HPGR test methods require the use of pilot machines and large sample quantities to assess the throughput characteristics of a certain ore type. Addressing the need for a laboratory scale HPGR test, a laboratory procedure was proposed to assess the throughput capability of mineral samples. Existing procedures were adopted from the fields of terramechanics and soil mechanics, and used as a basis for predictive HPGR throughput models. The applicability of the proposed tests was assessed through the comparison of predicted throughput with observed values from pilot HPGR testing. Results showed that outcomes of the proposed laboratory scale tests were statistically significant when used for the prediction of HPGR throughput. Primarily, the frictional properties of feed samples, as characterized by a direct shear box test, were found to be of particular significance. An approach to modelling the pressure profile which occurs on the HPGR roller surface was also proposed for potential use in a force-based model. Based on the results, an approach to HPGR testing requiring a reduced amount of sample was presented. Further work on characterizing the frictional properties of mineral samples was recommended. Analysis of HPGR outcomes indicated that strong relationships exist between power, throughput and roll gap, hence holistic approaches to HPGR modelling may be most appropriate for future predictive models.
URI: http://hdl.handle.net/2429/42095
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

Attribution-NonCommercial 2.5 Canada Except where otherwise noted, this item's license is described as Attribution-NonCommercial 2.5 Canada

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893