Go to  Advanced Search

E-cadherin regulation in ovarian cancer: mechanisms and potential functional roles

Show full item record

Files in this item

Files Size Format Description   View
ubc_2012_spring_lau_mantat.pdf 4.183Mb Adobe Portable Document Format   View/Open
Title: E-cadherin regulation in ovarian cancer: mechanisms and potential functional roles
Author: Lau, Man Tat
Degree Doctor of Philosophy - PhD
Program Reproductive and Developmental Sciences
Copyright Date: 2012
Publicly Available in cIRcle 2012-04-20
Abstract: E-cadherin is a cell-cell adhesion protein and tumor suppressor that is silenced in many malignancies. However, the role of E-cadherin in ovarian cancer progression is still controversial. In an attempt to define the regulation of E-cadherin in ovarian cancer, we found that local growth factors, FGF2 and IGF1, suppress E-cadherin expression in ovarian cancer cells. To elucidate the role of E-cadherin in ovarian cancer progression, we found that stable knockdown of E-cadherin significantly enhances, whereas overexpression of E-cadherin reduces tumor cell growth and invasion. Loss of E-cadherin results in constitutive activation of phosphoinositide 3-kinase (PI3K)/Akt signaling by inhibition of PTEN transcription through downregulation of Egr1. In addition, immunofluorescence microscopy and TCF promoter/luciferase reporter assays showed that E-cadherin loss was associated with enhanced nuclear beta-catenin signaling. Constitutive activation of PI3K/Akt signaling reinforced nuclear beta-catenin signaling by inactivating glycogen synthase kinase-3beta indicating cross talk between the PI3K/Akt and beta-catenin signaling pathways. Furthermore, we found that E-cadherin negatively regulates tumor cell growth, in part, by positively regulating PTEN expression via beta-catenin-mediated Egr1 regulation, thus influencing PI3K/Akt signaling. Finally, the constitutive activation of PI3K/Akt signaling activates its downstream mammalian target of rapamycin (mTOR) signaling pathway. The pharmacological inhibition of PI3K and mTOR suggests that PI3K/Akt/mTOR is required for E-cadherin-depletion-induced tumor cell motility. Moreover, loss of E-cadherin induces tumor cell invasion, in part, by activation of Rho GTPase, Cdc42 and Rac1. In summary, endogenous E-cadherin inhibits PI3K/Akt signaling and Rho GTPase activation. Thus, the loss of E-cadherin itself may contribute to dysregulate PI3K/Akt signaling and Rho GTPase activation to promote tumor proliferation and invasion in human ovarian cancer cells.
URI: http://hdl.handle.net/2429/42159
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893