Go to  Advanced Search

Habitat selection by foraging northern fur seals : assessing in-situ ocean temperature and links to Oceanographic features in the Eastern Bering Sea

Show simple item record

dc.contributor.author Nordstrom, Chad Andrew
dc.date.accessioned 2012-05-17T19:49:02Z
dc.date.available 2012-05-17T19:49:02Z
dc.date.copyright 2012 en
dc.date.issued 2012-05-17
dc.identifier.uri http://hdl.handle.net/2429/42337
dc.description.abstract Habitat characteristics and mechanisms that enable predators to successfully forage are poorly understood in open marine ecosystems. I addressed this problem in the eastern Bering Sea using animal-born data-loggers carried by lactating northern fur seals (Callorhinus ursinus) from two populations breeding in distinct oceanographic zones — a declining population on St. Paul Island on the continental shelf, and an increasing population on Bogoslof Island over the oceanic basin. The data-loggers recorded water temperatures, dive depths and animal locations throughout foraging trips that lasted as long as 17 days and extended as far as 460 km from the islands. I contrasted tag-derived ocean temperatures with concurrent shipboard measurements and found that the fur seal data revealed finer-scale hydrographic processes with less estimated error than ship-derived data, particularly in dynamic oceanographic areas. I also identified probable foraging hotspots using first-passage time analysis of at-sea locations of individual females, and linked them to fine-scale hydrographic data using habitat selection models. I found that hot spots were related to thermoclines and surface fronts (although not with water temperature), and that the relationships differed between populations and among foraging strategies. St. Paul Island fur seals that mixed epipelagic and benthic dives focused their effort in areas with deeper thermoclines that may concentrate prey closer to the ocean floor, while strictly epipelagic foragers tended to use waters with shallower thermoclines allowing prey to migrate closer to the surface. Fur seals from Bogoslof Island foraged almost exclusively over the Bering Sea basin and appeared to hunt intensively along the fine-scale fronts that surrounded the island while fur seals from St. Paul Island extended their trips off-shelf to forage in areas with similar oceanographic features. It appears that lactating females rely on fine-scale boundaries in the open ocean to effectively concentrate prey, and that the relative distribution and accessibility of these oceanographic features account for the inter-island differences in foraging patterns. Collectively, my thesis shows that wide-ranging, diving animals such as fur seals can be used to produce detailed maps of marine habitat and demonstrates the importance of fine-scale habitat characteristics to top predators foraging in dynamic oceanographic environments. en
dc.language.iso eng en
dc.publisher University of British Columbia en
dc.relation.ispartof Electronic Theses and Dissertations (ETDs) 2008+ en
dc.rights Attribution-NonCommercial 2.5 Canada
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/
dc.title Habitat selection by foraging northern fur seals : assessing in-situ ocean temperature and links to Oceanographic features in the Eastern Bering Sea en
dc.type Text en
dc.degree.name Master of Science - MSc en
dc.degree.discipline Zoology en
dc.degree.grantor University of British Columbia en
dc.date.graduation 2012-11 en
dc.type.text Thesis/Dissertation en
dc.description.affiliation Science, Faculty of
dc.degree.campus UBCV en
dc.description.scholarlevel Graduate en

Files in this item

Files Size Format Description   View
ubc_2012_fall_nordstrom_chad.pdf 6.599Mb Adobe Portable Document Format   View/Open

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial 2.5 Canada Except where otherwise noted, this item's license is described as Attribution-NonCommercial 2.5 Canada

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893