Go to  Advanced Search

Application of simulation techniques in development planning for caving methods

Show full item record

Files in this item

Files Size Format Description   View
ubc_2012_fall_li_zhen.pdf 18.60Mb Adobe Portable Document Format   View/Open
 
Title: Application of simulation techniques in development planning for caving methods
Author: Li, Zhen
Degree Master of Applied Science - MASc
Program Mining Engineering
Copyright Date: 2012
Publicly Available in cIRcle 2012-07-19
Abstract: The mining industry globally is moving towards exploiting more mineral deposits by underground methods for several reasons. Large scale underground block/panel caving mining methods are becoming more popular due to the low operating costs associated with economies of scale. However, the planning for a caving mine is very challenging. Simulation techniques have been used successfully by many industries for a long time. They have proven to be valuable in assisting the mine planning process, forecasting the performance of modeled systems, and testing alternatives at very low cost. In this research, simulation techniques were applied in the planning phase of a panel caving mine. These techniques were based on the existing experience as well as new software technology development. A state-of-art mine development simulation software package, SimMine®, was used as a tool for this study. Oyu Tolgoi is a large copper-gold complex located in southern Mongolia. It contains the Hugo North deposit which will be extracted using the panel caving method. Pre-production development (PPD) will involve over 40 km of lateral development and 70,000 m³ of massive excavations. So the PPD time and cost will be significant. The global mining industry has only limited experience to ensure effectively the design and planning for such complex, large scale projects. A case study of the Hugo North Lift 1 PPD is the focus for the simulation outlined in this research thesis. A simulation model was developed for the PPD planning. This was found to more accurately predict long term lateral development and mass excavation rates and scheduled ventilation requirements. The process of simulation was significant in enabling the optimization of development planning and equipment selection. There appear to be considerable opportunities for simulation of such planning aspects in mining. This research aims to contribute to future software development that delivers more reliable and functional simulation tools for mining engineers. These should realize significant safety, financial and environmental advances through improved scheduling for PPD in the next generation of large, complex underground mines.
URI: http://hdl.handle.net/2429/42767
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

Attribution-NonCommercial 2.5 Canada Except where otherwise noted, this item's license is described as Attribution-NonCommercial 2.5 Canada

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893