Go to  Advanced Search

Power estimation for diverse field programmable gate array architectures

Show full item record

Files in this item

Files Size Format Description   View
ubc_2012_fall_goeders_jeffrey.pdf 2.570Mb Adobe Portable Document Format   View/Open
Title: Power estimation for diverse field programmable gate array architectures
Author: Jeffrey, Goeders
Degree: Master of Applied Science - MASc
Program: Electrical and Computer Engineering
Copyright Date: 2012
Issue Date: 2012-10-18
Publisher University of British Columbia
Abstract: This thesis presents a new power model, which is capable of modelling the power usage of many different field-programmable gate array (FPGA) architectures. FPGA power models have been developed in the past; however, they were designed for a single, simple architecture, with known circuitry. This work explores a method for estimating power usage for many different user-created architectures. This requires a fundamentally new technique. Although the user specifies the functionality of the FPGA architecture, the physical circuitry is not specified. Central to this work is an algorithm which translates these functional descriptions into physical circuits. After this translation to circuit components, standard methods can be used to estimate power dissipation. In addition to enlarged architecture support, this model also provides support for modern FPGA features such as fracturable look-up tables and hard blocks. Compared to past models, this work provides substantially more detailed static power estimations, which is increasingly relevant as CMOS is scaled to smaller technologies. The model is designed to operate with modern CMOS technologies, and is validated against SPICE using 22 nm, 45 nm and 130 nm technologies. Results show that for common architectures, roughly 73% of power consumption is due to the routing fabric, 21% from logic blocks and 3% from the clock network. Architectures supporting fracturable look-up tables require 3.5-14% more power, as each logic block has additional I/O pins, increasing both local and global routing resources.
Affiliation: Applied Science, Faculty of
URI: http://hdl.handle.net/2429/43488
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893