Go to  Advanced Search

Beta-detected NMR of ⁸Li⁺ in spintronic materials

Show simple item record

dc.contributor.author Song, Qun
dc.date.accessioned 2012-11-30T23:11:10Z
dc.date.available 2012-11-30T23:11:10Z
dc.date.copyright 2012 en_US
dc.date.issued 2012-11-30
dc.identifier.uri http://hdl.handle.net/2429/43638
dc.description.abstract β-detected Nuclear Magnetic Resonance (βNMR) employs radioactive ⁸Li⁺ , which is optically spin-polarized, as a local probe to study magnetism in materials via β decay. In this thesis, βNMR is applied to spintronic materials, including GaAs, Ga₁₋xMnx Asand Fe/GaAs heterostructures in a depth-controlled manner at TRIUMF. High resolution β-NMR measurements were carried out on GaAs crystals (semi-insulating (SI-GaAs) and heavily doped n-type (n-GaAs)) as a control experiment for β-NMR on Fe/GaAs heterostructures. A small resonance shift was observed and found to be dependent on depth, temperature and doping. The depth dependence is only observed in SI-GaAs and not in n-GaAs. The resonance shift below 150 K in both GaAs is ∼ 100 ppm, on the same order of some Knight shifts of ⁸Li⁺ in noble metals. Ga₁₋xMnxAs is the first βNMR study on a ferromagnetic material through the ferromagnetic transition. Both spin lattice relaxation (SLR) and resonance of ⁸Li⁺ were measured. Two resonances were clearly resolved from the nonmagnetic GaAs substrate and the magnetic Ga₁₋xMnxAs film. The latter one negatively shifts and is linearly proportional to the applied field. The hyperfine coupling constant AHF of ⁸Li⁺ in Ga₁₋xMnxAs is found to be negative. The SLR rate λ does not follow Korringa’s Law and its amplitude shows a weak temperature dependence through TC. The behaviours of AHF and λ suggest that the delocalized holes originate from a Mn derived impurity band. No evidence of magnetic phase separation is found. ⁸Li⁺ provides a new depth-dependent local probe to detect injected spin polarization. We measured the ⁸Li⁺ resonance in Fe/GaAs heterostructures with semi-insulating and heavily doped n-type substrates, with and without injected current. With zero current, no spin polarization at thermal equilibrium is found. A new current injection system was designed and setup to conduct current injection from the thin Fe layer into the n-GaAs substrate. We found effects of local Joule heating and a very small stray field caused by the injected current but no convincing evidence of injected spin polarization. en_US
dc.language.iso eng en_US
dc.publisher University of British Columbia en
dc.title Beta-detected NMR of ⁸Li⁺ in spintronic materials en_US
dc.type Electronic Thesis or Dissertation en
dc.degree.name Doctor of Philosophy - PhD en_US
dc.degree.discipline Physics en_US
dc.degree.grantor University of British Columbia en
dc.date.graduation 2013-05 en_US
dc.degree.campus UBCV en_US
dc.description.scholarlevel Graduate en


Files in this item

Files Size Format Description   View
ubc_2013_spring_song_qun.pdf 6.465Mb Adobe Portable Document Format   View/Open
 

This item appears in the following Collection(s)

Show simple item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893