Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience.

Role of E-cadherin in the serous borderline ovarian tumor and low-grade serous ovarian carcinoma cell invasion

Show full item record

Files in this item

Files Size Format Description   View
ubc_2013_spring_cheng_jung_chien.pdf 4.697Mb Adobe Portable Document Format   View/Open
Title: Role of E-cadherin in the serous borderline ovarian tumor and low-grade serous ovarian carcinoma cell invasion
Author: Cheng, Jung-Chien
Degree Doctor of Philosophy - PhD
Program Reproductive and Developmental Sciences
Copyright Date: 2012
Publicly Available in cIRcle 2012-12-05
Abstract: E-cadherin is a membrane glycoprotein located at cell adherens junctions. A switch from E-cadherin to N-cadherin expression has been considered a hallmark of the epithelial-mesenchymal transition (EMT), which is primarily due to the up-regulation of the transcription factors Snail, Slug, Twist and ZEB1. Epithelial ovarian cancer cells with low E-cadherin expression are more invasive, and the absence of E-cadherin expression in ovarian cancer is associated with poor prognosis and survival. Serous borderline ovarian tumors (SBOT) are slow-growing, non-invasive ovarian epithelial neoplasms. SBOT are considered distinct entities that give rise to invasive low-grade serous carcinomas (LGSC), which have a relatively poor prognosis and are unrelated to high-grade serous carcinomas (HGSC). The mechanisms underlying the progression of non-invasive SBOT to invasive LGSC are not understood. We have established short-term cultures of SBOT cells from tumor biopsies and have shown that inactivation of p53, Rb and/or PP2A by the SV40 large T (LT) and small T (ST) antigens allows SBOT cells to acquire characteristics associated with neoplastic progression, including increased cell motility, invasion and EMT. However, the overexpression of N-cadherin does not induce cell invasion in SBOT cells. In this study, using loss- and gain-of-function approaches, we show that p53 acts as a tumor suppressor in the regulation of SBOT and LGSC cell invasion by regulating E-cadherin expression through PI3K/Akt-mediated transcriptional and epigenetic machineries. In high-grade ovarian cancer cultures, it has been shown that epidermal growth factor (EGF) and transforming growth factor-beta (TGF-β) induce cell invasion by activating the EMT. However, the effects of EGF and TGF-β on SBOT and LGSC cell invasion remain unknown. We show that EGF induces SBOT cell invasion by activating the EMT. In addition, our results suggest that there are EMT-independent mechanisms that mediate EGF-induced LGSC cell invasion. Interestingly, we show a dual function for TGF-β in which it induces invasion in SBOT cells by activating the EMT and promotes apoptosis in LGSC cells. Overall, this study demonstrates that the loss of E-cadherin expression in SBOT may play an important role in the transition to invasive LGSC.
URI: http://hdl.handle.net/2429/43651
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893