UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An optical functional analysis of amorphous semiconductors Minar, Sanjida Begum

Abstract

Models for the spectral dependence of the real and imaginary components of the dielectric function, appropriate for the case of amorphous semiconductors,are considered. In the first phase of this analysis, from an empirical expression for the imaginary part of the dielectric function, this expression corresponding to that of Jellison and Modine [G. E. Jellison, Jr. and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Applied Physics Letters, vol. 69, pp. 371-373, 1996],a closed-form expression for the real part of the dielectric function is determined using a Kramers-Kronig transformation. The resultant expression for the real component of the dielectric function corresponds with that of the model of Jellison and Modine. The subsequent comparison with experiment is found to be satisfactory. Then, in the latter stage of this analysis, through the application of a Kramers-Kronig transformation on an empirical model for the imaginary part of the dielectric function, this model stemming from a model for the distributions of electronic states, the spectral dependence of the real part of the dielectric function is determined. Fits with the results of experiment, taken over the near-infrared, visible, and near-ultraviolet, are also found to be satisfactory.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International