UBC Faculty Research and Publications

Curvelet-domain least-squares migration with sparseness constraints. Herrmann, Felix J.; Moghaddam, Peyman P.

Abstract

A non-linear edge-preserving solution to the least-squares migration problem with sparseness constraints is introduced. The applied formalism explores Curvelets as basis functions that, by virtue of their sparseness and locality, not only allow for a reduction of the dimensionality of the imaging problem but which also naturally lead to a non-linear solution with significantly improved signalto-noise ratio. Additional conditions on the image are imposed by solving a constrained optimization problem on the estimated Curvelet coefficients initialized by thresholding. This optimization is designed to also restore the amplitudes by (approximately) inverting the normal operator, which is like-wise the (de)-migration operators, almost diagonalized by the Curvelet transform.

Item Media

Item Citations and Data

Rights

All rights reserved