UBC Faculty Research and Publications

A new paradigm for proppant schedule design Dontsov, E. V.; Peirce, Anthony

Abstract

This study introduces a novel methodology for the design of the proppant pumping schedule for a hydraulic fracture, in which the fi nal proppant distribution along the crack is prescribed. The method is based on the assumption that the particles have relatively small impact on the fracture propagation, unless they reach the tip region. This makes it possible to relate the proppant velocity to the clear fluid velocity inside the fracture, which is calculated assuming no proppant. Having the history of the clear fluid velocity distribution, the prospective proppant motion can be computed. Then, volume balance is used to relate the final concentration at some point inside the fracture to the corresponding input concentration at a speci fic time instant, which helps to avoid solving an inverse problem. One exceptional feature of the approach lies in the fact that it is applicable to multiple fracture geometries and can be implemented using various hydraulic fracturing simulators. To verify the technique, two fracture geometries are considered - Khristianovich-Zheltov-Geertsma-De Klerk (KGD) and pseudo-3D (P3D). It is shown that the developed approach is capable of properly estimating the pumping schedule for both geometries. In particular, the proppant placement along the fracture at the end of the pumping period, calculated according to the adopted proppant transport model, shows close agreement with the design distribution. The comparison with Nolte's scheduling scheme shows that the latter is not always accurate, and cannot capture the essential di fferences between the schedules for the fracture geometries considered.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada