UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Dynamics and control of multibody tethered systems using an order-N formulation Kalantzis, Spiros

Abstract

The equations of motion for a multibody tethered satellite system in three dimensional Keplerian orbit are derived. The model considers a multi-satellite system connected in series by flexible tethers. Both tethers and subsatellites are free to undergo three dimensional attitude motion, together with deployment and retrieval as well as longitudinal and transverse vibration for the tether. The elastic deformations of the tethers are discretized using the assumed mode method. The tether attachment points to the subsatellites are kept arbitrary and time varying. The model is also capable of simulating the response of the entire system spinning about an arbitrary axis, as in the case of OEDIPUS-A/C which spins about the nominal tether length, or the proposed BICEPS mission where the system cartwheels about the orbit normal. The governing equations of motion are derived using a non-recursive order(N) Lagrangian procedure which significantly reduces the computational cost associated with the inversion of the mass matrix, an important consideration for multi-satellite systems. Also, a symbolic integration and coding package is used to evaluate modal integrals thus avoiding their costly on-line numerical evaluation. Next, versatility of the formulation is illustrated through its application to two different tethered satellite systems of contemporary interest. Finally, a thruster and momentum-wheel based attitude controller is developed using the Feedback Linearization Technique, in conjunction with an offset (tether attachment point) control strategy for the suppression of the tether's vibratory motion using the optimal Linear Quadratic Gaussian-Loop Transfer Recovery method. Both the controllers are successful in stabilizing the system over a range of mission profiles.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.