Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience. [ELK]

Large-signal spice models for heterojunction bipolar transistors and lasers

Show full item record

Files in this item

Files Size Format Description   View
ubc_1994-0179.pdf 3.636Mb Adobe Portable Document Format   View/Open
Title: Large-signal spice models for heterojunction bipolar transistors and lasers
Author: Feng, James Jun Xiong
Degree Master of Applied Science - MASc
Program Electrical and Computer Engineering
Copyright Date: 1994
Abstract: Large-signal SPICE models for heterojunction bipolar transistors (HBTs) and semiconductor lasers are developed. For a general graded-base double heterojunction bipolar transistor (DHBT), a Full Ebers-Moll model and its simplified versions for specific HBTs have been derived from DAPHNE, a and implemented in the circuit simulator HSPICE by using its piece-wise-linear features to represent the coefficients with voltage-dependent normalized junction velocity terms, which are used to describe tunneling factors and junction barrier heights for back-injected electrons. For uniform and moderately-graded base single heterojunction bipolar transistors (SHBTs), this model can be further simplified and BJT-compatible versions of the HBT SPICE model can also be derived by using an exponential fit to the normalized junction velocity. The experimental data, forward collector current and the variation of the oscillation frequency fosc with bias voltage Vcci f°r a graded-base SHBT and two five-stage ring oscillators, respectively, can be well-fitted by simulation results from DAPHNE and the BJT SPICE model. A popular large-signal equivalent circuit model, developed by Tucker [4, 5], based on the rate equation for a single-mode semiconductor laser, has been modified, simulated and compared with experimental data. Finally, the performance of HBT-laser transmitters is also simulated to show that the models developed in this thesis have the capability of being very useful design tools for HBT-laser optoelectronic integrated circuits. [Footnote] 1 DAPHNE: An acronym for Device Analysis Program for heterojunction Numerical Evaluation, has been developed at UBC based on the work of Ho [1], Ang [2], and Laser [3].
URI: http://hdl.handle.net/2429/5043
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893