Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience.

Abstraction and search for decision-theoretic planning

Show full item record

Files in this item

Files Size Format Description   View
ubc_1994-0513.pdf 1.862Mb Adobe Portable Document Format   View/Open
Title: Abstraction and search for decision-theoretic planning
Author: Dearden, Richard William
Degree Master of Science - MSc
Program Computer Science
Copyright Date: 1994
Abstract: We investigate the use Markov Decision Processes a.s a means of representing worlds in which actions have probabilistic effects. Markov Decision Processes provide many representational advantages over traditional planning representations. As well as being able to represent actions with more than one possible result, they also provide a much richer way to represent good and bad states of the world. Conventional approaches for finding optimal plans for Markov Decision Processes are computationally expensive and generally impractical for the large domains and real-time requirements of many planning applications. For this reason, we have concentrated on producing approximately optimal plans using a minimal amount of computation. We describe two complementary methods for planning. The first is to generate ap proximately optimal plans using abstraction. By ignoring certain features of a planning problem, we can create a smaller problem for which an optimal plan can be efficiently found by conventional means. The plan for this smaller problem can be directly applied to the original problem, and also provides an estimate of the value of each possible state of the world. Our second technique uses these estimates as a heuristic, and applies game tree search techniques to try to determine a better action to perform in the current state of the system. By repeatedly choosing an action to perform by searching, and executing the action, we provide a planning algorithm which has a complexity that is independent of the number of possible states of the world.
URI: http://hdl.handle.net/2429/5461
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893