Go to  Advanced Search

Soil fertility, nutient dynamics and socio-economic interaction in the middle mountains of Nepal

Show full item record

Files in this item

Files Size Format Description   View
ubc_1997-250237.pdf 21.72Mb Adobe Portable Document Format   View/Open
 
Title: Soil fertility, nutient dynamics and socio-economic interaction in the middle mountains of Nepal
Author: Brown, Sandra J.
Degree Doctor of Philosophy - PhD
Program Interdisciplinary Studies in Resource Management Science
Copyright Date: 1997
Subject Keywords Soil fertility -- Nepal; Agriculture -- Nepal; Nepal -- Soil conditions
Abstract: Understanding soil fertility issues in the Middle Mountains of Nepal requires interdisciplinary research, integrating biophysical and socio-economic factors. Soil degradation is associated with a wide range of human activities, natural processes, and the wider economic, political and social aspects of their setting. This study focuses on a in the Middle Mountains and addresses four research questions: What is the current soil fertility status? How is it changing? Why is it changing? and What are the implications for production, sustainability and management? Soil surveys, plot studies, nutrient balance modelling, household questionnaires and GIS mapping techniques are used to address these questions. The overall soil fertility conditions of the study area are poor and appear to be declining under most land uses. Soil pH averages 4.8 ± 0.4 and is below desirable levels for crop production. Soil carbon (0.99 ± 0.5 %) and cation exchange capacity (10.8 ± 4.1 cmol kg⁻¹) are low, and available phosphorus (16.6 ± 18.9 mg kg⁻¹) is a concern given the low pH. Land use is the most important factor influencing soil fertility with khet (irrigated agriculture) showing the best fertility status (pH 5.2, Ca 5.3 cmol kg⁻¹ and available P 21.6 mg kg⁻¹), followed by bari, and grassland, with forest soil fertility being the poorest (pH 4.2, Ca 0.9 cmol kg⁻¹ and available P 0.7 mg kg⁻¹). Soil type is the second most important factor influencing soil fertility, with red soils displaying significantly lower available P than non-red soils (9.8 versus 22.1 mg kg⁻¹). Phosphorus sorption studies indicate the high P fixation capacity of red soils, 1.2 g kg⁻¹ compared to 0.3 g kg⁻¹ calculated for non-red soils. Extrapolation from site specific data to a spatial coverage using statistical analysis and GIS techniques indicates that only 14% of the classified areas have adequate pH, available P and exchangeable Ca, and 29% of the area has a high P fixation capacity (>1.5 g kg⁻¹). Nutrient balance modelling provides estimates of nutrient depletion from the soil pool and raises concerns about the sustainability of upland farming, intensive vegetable crop production and forest nutrient cycling. Dryland maize production results in deficits of 188 kg N, 38 kg P205 and 21 kg Ca per ha furrow slice Rice-wheat cultivation on irrigated land appears to have limited impact on the soil nutrient pool, but the addition of premonsoon maize to the rotation results in deficits of 106 kg N and 12 kg P₂O₅ per ha furrow slice. Rates of soil fertility depletion estimated from differences in soil fertility between land uses indicate substantial N and Ca losses from forest land (94 and 57 kg ha per furrow slice respectively). Land use change, the impact on nutrient flows and relationships between nutrient inputs, crop uptake, nutrient balances and soil fertility provide an understanding of why soil fertility is changing. Historical forest cover data indicates substantial deforestation during the 1950-1960 period, a subsequent reversal in the 1972-1990 period associated with afforestation efforts, and renewed losses in the 1990s. Forest soils receive minimal nutrient inputs and large biomass removal results in a low soil fertility status. Expansion and marginalization of dryland agriculture were noted from 1972-1990, as former grazing, shrub and abandoned lands were terraced and cultivated. Nutrient fluxes indicate that inputs are insufficient to maintain the soil nutrient pool under dryland cultivation due to the high nutrient requirements of maize and nutrient losses through erosion. Nutrient balances for maize and wheat are positively correlated with nutrient inputs but relationships with soil fertility are weak. On irrigated khet lands, cropping has intensified and cash crop production has prompted the use of agrochemicals. Excess fertilization is leading to eutrophication and the high use of agrochemicals is a health concern. Nutrient fluxes on khet fields appear to be sustainable due to the addition of nutrients through irrigation and sediment trapping, but may be insufficient to maintain triple cropping. Grass and shrub land dynamics are characterized by minimal inputs and low productivity. The traditional farming system appears to have been sustainable, but triple cropping and increased vegetable production are threatening sustainability. The transfer of nutrients within the fanriing system is unbalanced. Under intensive production, nutrients on khet land are being depleted, poor farmers are shifting their limited compost inputs from bari to khet fields, and biomass collected from forests, disrupts the natural nutrient cycle. Population growth, land tenure, culture and poverty are the underlying socio-economic factors which influence farming system dynamics, directly impact nutrient inputs, and indirectly drive soil fertility degradation. Population growth rates of 2.6% have contributed to agricultural intensification and marginalization, and pressure on forest resources. The distribution of land is highly skewed with 15% of the surveyed households owning 46% of the land. Women play a central role in soil fertility management through their responsibilities for livestock care, litter collection and compost application, but increasing workloads related to commercial milk production, cash cropping and the off-farm employment of males are a major concern. Agricultural assets, farm gross margins, market oriented production, commercial milk production and off-farm employment provide indicators of economic well-being and are positively correlated with nutrient inputs. Total returns and gross margins are greatest for households growing vegetable crops as part of their rotation, and these households apply significantly more compost and fertilizer to both khet and bari land. Access to land is a key factor driving nutrient management and influencing economic well-being. Land is the main agricultural asset in the study area, khet land is the most productive and khet provides the greatest opportunity of cash crop production. However, given the increased labour demands for triple cropping, vegetable production and commercial milk production, the social sustainability is being threatened. Some 47% of the households were not able to fulfil their basic need requirements from the land they farm. They will have no alternative but to exhaust the capital stock of soil nutrients rather than investing in soil fertility. Maintenance of soil fertility is essential to meet the basic food and resource needs of the growing population. Organic matter management is critical, supplying macro- and micro nutrients, reducing acidification, maintaining soil structure and enhancing microbial activity. Water management and sediment trapping on lowland fields provide additional nutrients on khet land; soil acidity on upland fields and forest land needs to be better managed given the increased fertilizer use on bari and high biomass removal from forests; and the incorporation of N fixing species into agricultural production systems are an option which may provide additional animal fodder and help sustain soil fertility.
URI: http://hdl.handle.net/2429/6728
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893