Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience. [CYPRESS]

Safety verification conditions for software-intensive critical systems

Show full item record

Files in this item

Files Size Format Description   View
ubc_1998-0665.pdf 2.821Mb Adobe Portable Document Format   View/Open
Title: Safety verification conditions for software-intensive critical systems
Author: Wong, Ken
Degree: Master of Science - MSc
Program: Computer Science
Copyright Date: 1998
Issue Date: 2009-05-28
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Abstract: This dissertation proposes an approach to generating "safety verification conditions" (SVCs) that improves upon the accuracy and thoroughness of approaches that rely primarily on engineering judgment. This approach, "Verification Tree Method" (VTM), is part of an overall system safety engineering process intended to eliminate or mitigate hazards in the development of a software-intensive critical system. VTM carried out to the level of a "black box" view of the system results in a set of system safety requirements. VTM can also be used to derive SVCs at the software component and the source code levels. The SVCs can then be used as input into the corresponding level of testing. VTM is based on Fault Tree Analysis (FTA). Like FTA, VTM involves tracing a given hazard is traced backwards through the system to cover all the ways in which a hazard can occur. VTM enhances FTA with a constrained syntax and "proof-by-contradiction" style reasoning to support the systematic derivation of SVCs. The SVCs include key safety-related temporal relationships. The result of the analysis is a rigorous safety argument that provides greater confidence that the SVCs, if satisfied, will be sufficient to mitigate the hazard. This informal argument can be validated with a formal verification technique. VTM is illustrated in this dissertation with a (hypothetical) chemical factory information system.
Affiliation: Science, Faculty of
URI: http://hdl.handle.net/2429/8371
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893