UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Ultrafast photoluminescence from Poly(p-phenylenevinylene) McCutcheon, Murray

Abstract

Femtosecond time-resolved photoluminescence spectroscopy is used to study the dynamics of poly(p-phenylenevinylene) (PPV) at 77K and 300K over an energy range 2.19-2.37 eV. At all emission energies studied, the photoluminescence excited by ~100 fs long pulses of 400 nm radiation rises to a maximum value in less than 1 ps and then monotonically decreases with increasing delay. The decay curves can all be described by the summation of two, or in some cases three, exponential functions. Analysis of the spectral dependence of the various time constants extracted from these fits indicates that the photoluminescence at any given wavelength is due in general to the superposition of three transitions emanating from a single set of inhomogeneously broadened excitons. The three distinct transitions correspond to processes in which two, one or zero phonons are excited in the host polymer during the emission event. A complete analysis of the data indicates that the lifetime of the inhomogeneously broadened excitons is found to increase monotonically from a value less than the 300 fs time resolution of our system at 330 meV above the peak in the density of states (DOS), to 116 ps at an energy 7 meV below the peak in the DOS.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.